Cooperative Games

Lecture 8: Simple Games

Stéphane Airiau

ILLC - University of Amsterdam

Stéphane Airiau (ILLC) - Cooperative Games

Simple games

Stéphane Airiau (ILLC) - Cooperative Games

Example

 $N = \{1, 2, 3, 4\}.$

We use majority voting, and in case of a tie, the decision of player 1 wins.

The set of winning coalitions is $\{\{1,2\},\{1,3\},\{1,4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}.$

The set of minimal winning coalitions is $\{\{1,2\},\{1,3\},\{1,4\},\{2,3,4\}\}.$

éphane Airiau (ILLC) - Cooperative Gan

A class of simple games

Definition (weighted voting games)

A game $(N, w_{i \in N}, q)$ is a weighted voting game when v satisfies unanimity, monotonicity and the valuation function is defined as

$$v(S) = \begin{cases} 1 \text{ when } \sum_{i \in S} w_i \geqslant q \\ 0 \text{ otherwise} \end{cases}$$

Unanimity requires that $\sum_{i \in N} w_i \geqslant q$. If we assume that $\forall i \in N \ w_i \geqslant 0$, monotonicity is guaranteed. For the rest of the lecture, we will assume $w_i \geqslant 0$.

We will note a weighted voting game $(N, w_{i \in N}, q)$ as $[q; w_1, ..., w_n].$

A weighted voting game is a succinct representation, as we only need to define a weight for each agent and a threshold.

Stéphane Airiau (ILLC) - Cooperative Games

Today

- Simple games: a class of TU games for modeling voting.
- Measuring the power of a voter: Shapley Shubik, Banzhaff and Co.

Stéphane Airiau (ILLC) - Cooperative Games

Simple Games

Definition (Simple games)

A game (N,v) is a **Simple game** when

the valuation function takes two values

1 for a winning coalitions0 for the losing coalitions

v satisfies unanimity: v(N) = 1

v satisfies monotonicity: $S \subseteq T \Rightarrow v(S) \leqslant v(T)$

One can represent the game by stating all the wining coalitions. Thanks to monotonicity, it is sufficient to only write down the minimal winning coalitions defined as follows:

Definition (Minimal winning coalition)

Let (N,v) be a TU game. A coalition $\mathcal C$ is a **minimal** winning coalition iff $v(\mathcal C)=1$ and $\forall i\in\mathcal C, v(\mathcal C\setminus\{i\})=0$.

Stéphane Airiau (ILLC) - Cooperative Games

Formal definition of common terms in voting

Definition (Dictator)

Let (N,v) be a simple game. A player $i \in N$ is a **dictator** iff $\{i\}$ is a winning coalition.

Note that with the requirements of simple games, it is possible to have more than one dictator!

Definition (Veto Player)

Let (N,v) be a simple game. A player $i \in N$ is a **veto** player if $N \setminus \{i\}$ is a losing coalition. Alternatively, i is a **veto** player iff for all winning coalition \mathbb{C} , $i \in \mathbb{C}$.

It also follows that a veto player is member of every minimal winning coalitions.

Definition (blocking coalition)

A coalition $C \subseteq N$ is a **blocking coalition** iff C is a losing coalition and $\forall S \subseteq N \setminus \mathcal{C}$, $S \setminus \mathcal{C}$ is a losing coalition.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 6

Weighted voting game is a strict subclass of voting games. i.e., all voting games are not weighted voting games.

Example: Let $(\{1,2,3,4\},v)$ a voting game such that the set of minimal winning coalitions is $\{\{1,2\},\{3,4\}\}$. Let us assume we can represent (N, v) with a weighted voting game $[q; w_1, w_2, w_3, w_4].$

 $v(\{1,2\}) = 1$ then $w_1 + w_2 \geqslant q$

 $v({3,4}) = 1$ then $w_3 + w_4 \ge q$ $v({1,3}) = 0$ then $w_1 + w_3 < q$

 $v({2,4}) = 0$ then $w_2 + w_4 < q$

But then, $w_1 + w_2 + w_3 + w_4 < 2q$ and $w_1 + w_2 + w_3 + w_4 \geqslant 2q$, which is impossible. Hence, (N, v) cannot be represented by a weighted voting game.

Stéphane Airiau (ILLC) - Cooperative Games

Example Let us consider the game [q; 4,2,1]. • q = 2: minimal winning coalitions: $\{1\},\{2\}$ • q = 3: minimal winning coalitions: $\{1\},\{2,3\}$ • q = 4: minimal winning coalition: {1} • q = 5: minimal winning coalitions: $\{1,2\},\{1,3\}$ • q = 6: minimal winning coalition: $\{1,2\}$ • q = 7: minimal winning coalition: $\{1,2,3\}$ for q=4 ("majority" weight), 1 is a dictator, 2 and 3 are

Stéphane Airiau (ILLC) - Cooperative Games

Theorem

Let (N, v) be a simple game. Then $Core(N,v) = \begin{cases} x \in \mathbb{R}^n \middle| & x \text{ is an imputation} \\ x_i = 0 \text{ for each non-veto player } i \end{cases}$

Proof

- $\subseteq \text{ Let } x \in Core(N,v). \text{ By definition } x(N) = 1. \text{ Let } i \text{ be a non-veto player. } x(N\setminus\{i\}) \geqslant v(N\setminus\{i\}) = 1. \text{ Hence } x(N\setminus\{i\}) = 1 \text{ and } x_i = 0.$
- ⊇ Let x be an imputation and $x_i = 0$ for every non-veto player i. Since x(N) = 1, the set V of veto players is non-empty and x(V) = 1.

Let $C \subseteq N$. If C is a winning coalition then $V \subseteq C$, hence $x(\mathcal{C}) \geqslant v(\mathcal{C})$. Otherwise, $v(\mathcal{C})$ is a losing coalition (which may contain veto players), and $x(\mathcal{C}) \geqslant v(\mathcal{C})$. Hence, x is group rational.

Stéphane Airiau (ILLC) - Cooperative Games

Proof

(continuation)

 \Leftarrow Let (N, v_V) a unanimity game. Let us prove it is a convex game. Let $S \subseteq N$ and $T \subseteq N$, and we want to prove that $v(S) + v(T) \le v(S \cup T) + v(S \cap T)$.

• case $V\subseteq S\cap T$: Then $V\subseteq S$ and $V\subseteq T$, and we have $2\leqslant 2$ \checkmark • case $V\nsubseteq S\cap T\wedge V\subseteq S\cup T$:

• case $V \nsubseteq S \cup T$: then $0 \le 0$

For all cases, $v(S) + v(T) \le v(S \cup T) + v(S \cap T)$, hence a unanimity game is convex.

In addition, all members of V are veto players.

Convex simple games are the games with a single minimal winning coalition.

phane Airiau (ILLC) - Cooperative Game

Stéphane Airiau (ILLC) - Cooperative Games

Weights may be deceptive

• Let us consider the game [10; 7,4,3,3,1].

The set of minimal winning coalitions is $\{\{1,2\}\{1,3\}\{1,4\}\{2,3,4\}\}$

Player 5, although it has some weight, is a dummy.

Player 2 has a higher weight than player 3 and 4, but it is clear that player 2, 3 and 4 have the same influence.

• Let us consider the game [51; 49,49,2]

The set of winning coalition is $\{\{1,2\},\{1,3\},\{2,3\}\}$.

It seems that the players have symmetric roles, but it is not reflected in their weights.

Stability for simple games

Stéphane Airiau (ILLC) - Cooperative Gam

Theorem

A simple game (N, v) is convex iff it is a unanimity game (N, v_V) where V is the set of veto players.

A game is convex iff $\forall S, T \subseteq N \ v(S) + v(T) \leqslant v(S \cap T) + v(S \cup T)$.

 \Rightarrow Let us assume (N,v) is convex.

If S and T are winning coalitions, $S \cup T$ is a winning coalition by monotonicity. Then, we have $2 \le 1 + v(S \cap T)$ and it follows that $v(S \cap T) = 1$. The intersection of two winning coalitions is a winning coalition.

Moreover, from the definition of veto players, the intersection of all winning coalitions is the set V of veto players. Hence, v(V) = 1.

By monotonicity, if $V \subseteq \mathcal{C}$, $v(\mathcal{C}) = 1$

Otherwise, $V \nsubseteq \mathbb{C}$. Then there must be a veto player $i \notin \mathbb{C}$, and it must be the case that $v(\mathbb{C}) = 0$

Hence, for all coalition $C \subseteq N$, v(C) = 1 iff $V \subseteq C$.

П

Stéphane Airiau (ILLC) - Cooperative Games

Voting Power

Stéphane Airiau (ILLC) - Cooperative G

Lecture 8: Simple Games 14

Shapley-Shubik power index

Definition (Pivotal or swing player)

Let (N,v) be a simple game. A agent i is **pivotal** or a **swing agent** for a coalition $C \subseteq N \setminus \{i\}$ if agent i turns the coalition C from a losing to a winning coalition by joining C, i.e., v(C) = 0 and $v(C \cup \{i\}) = 1$.

Given a **permutation** σ on N, there is a single pivotal agent.

The Shapley-Shubik index of an agent \boldsymbol{i} is the percentage of permutation in which i is pivotal, i.e.

$$I_{\mathrm{SS}}(N,v,i) = \sum_{\mathfrak{C} \subseteq N \backslash \{i\}} \frac{|\mathfrak{C}|!(|N|-|C|-1)!}{|N|!} \big(v(\mathfrak{C} \cup \{i\}) - v(\mathfrak{C})\big).$$

"For each permutation, the pivotal player gets a point."

The Shapley-Shubik power index is the Shapley value. The index corresponds to the expected marginal utility assuming all join orders to form the grand coalitions are equally likely.

Banzhaff power index

Let (N,v) be a TU game.

- We want to count the number of coalitions in which an agent is a swing agent.
- For each coalition, we determine which agent is a swing agent (more than one agent may be pivotal).
- $\text{o The } \begin{array}{l} \text{ The } \text{raw Banzhaff index} \text{ of a player } i \text{ is} \\ \beta_i = \frac{\sum_{\mathbb{C} \subseteq N \setminus \{i\}} v(\mathbb{C} \cup \{i\}) v(\mathbb{C})}{2^{n-1}}. \end{array}$
- \circ For a simple game (N,v), v(N)=1 and $v(\emptyset)=0$, at least one player i has a power index $\beta_i \neq 0$. Hence, $B=\sum_{j\in N}\beta_j>0$.
- The normalized Banzhaff index of player i for a simple game (N,v) is defined as $I_B(N,v,i) = \frac{\beta_i}{B}$.

The index corresponds to the expected marginal utility assuming all coalitions are equally likely.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 17

Paradoxes

The power indices may behave in an unexpected way if we modify the game.

Paradox of new players

intuition: Adding a voter should decrease the power of the original voters. —not necessarily true!

Consider the game [4;2,2,1]

- o Player 3 is dummy, should have an index of 0.
- $\,\circ\,$ Assume a new player joins with weight 1.
- Player 3 is no longer a dummy, her index has increased and is strictly positive in the new game.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Gar

Other indices

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 21

- Maybe only minimal winning coalitions are important to measure the power of an agent (non-minimal winning coalitions may form, but only the minimal ones are important to measure power).
- \circ Let (N,v) be a simple game, $i \in N$ be an agent. $\mathfrak{M}(N,v)$ denotes the set of minimal winning coalitions, $\mathfrak{M}_i(N,v)$ denotes the set of minimal winning coalitions containing i.
- ullet The **Deegan-Packel** power index of player i is:

$$I_{DP}(N,v,i) = \frac{1}{|\mathcal{M}(N,v)|} \sum_{\mathcal{C} \in \mathcal{M}_i(N,v)} \frac{1}{|\mathcal{C}|}.$$

 \circ The **public good index** of player i is defined as

$$I_{PG}(N,v,i) = \frac{|\mathcal{M}_i(N,v)|}{\sum_{j \in N} |\mathcal{M}_j(N,v)|}.$$

Examples: [7; 4,3,2,1]

winning coalitions: {1,2} {1,2,3} {1,2,4}

The Shapley value and Banzhaff index may be different.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 18

Paradoxes (cont)

Paradox of size

intuition: If a voter splits her identities and share her weights between the new identities, she should not gain or lose power. —no necessarily true!

• increase of power n-player game $[n+1;2,1,\ldots,1]$: all voters have a Shapley value of $\frac{1}{2}$.

Voter 1 splits into two voters with weight of 1. In the new game, each agent has a Shapley value of $\frac{1}{n+1}$ —voter 1 gets more power.

• decrease of power n-player game $[2n-1;2,\ldots,2]$: all voters have the same Shapley value of $\frac{1}{n}$. Voter 1 splits into two voters with a weight of 1. These

Voter 1 splits into two voters with a weight of 1. These new voters have a Shapley value of $\frac{1}{n(n+1)}$ in the new game —voter 1 loses power by a factor of $\frac{n+1}{2}$.

Stéphane Airiau (ILLC) - Cooperative Game

Lecture 8: Simple Games 20

- \circ Coleman indices: all winning coalitions are equally likely. Let $\mathcal{W}(N,v)$ be the set of all winning coalitions.
- The power of **collectivity to act**: *P*_{act} is the probability that a winning vote arise.

$$P_{act} = \frac{|\mathcal{W}(N,v)|}{2^n}$$

• The power to prevent an action: $P_{prevent}$ captures the power of i to prevent a coalition to win by withholding its vote.

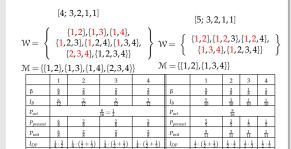
$$P_{\textit{prevent}} = \frac{\sum_{\mathcal{C} \subseteq N \setminus \{i\}} v(\mathcal{C} \cup \{i\}) - v(\mathcal{C})}{|\mathcal{W}(N, v)|}$$

 The power to initiate an action: P_{init} captures the power of i to join a losing coalition so that it becomes a winning one.

$$P_{init} = \frac{\sum_{\mathcal{C} \subseteq N \setminus \{i\}} v(\mathcal{C} \cup \{i\}) - v(\mathcal{C})}{2^n - |\mathcal{W}(N, v)|}$$

Stéphane Airiau (ILLC) - Cooperative Gam

Lecture 8: Simple Games 22



Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 24

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 8: Simple Games 23

Representation and Complexitity issues
Are there some succinct representations for some classes of games.
How hard is it to compute a solution concept?

Lecture 8: Simple Games 26

Stéphane Airiau (ILLC) - Cooperative Games